Блок питания пк – схема, ремонт своими руками

Ремонт импульсного блока питания своими руками – методика, секреты и особенности

Большинство современной бытовой электронной аппаратуры имеет в своей конструкции самостоятельные или расположенные на отдельной плате электронные модули понижающие и выпрямляющие сетевое напряжение.

Причём последние 20 лет, вместо традиционных понижающе-выпрямительных схем на основе силового трансформатора и диодного моста, они построены по схеме импульсного преобразования напряжения. Несмотря на их высокую схемотехническую надежность они достаточно часто выходят из строя.

Причин здесь несколько, но основными из них являются:

  • колебания сетевого напряжения, на которые не рассчитаны эти понижающе-выпрямительные устройства;
  • несоблюдение правил эксплуатации;
  • подключение нагрузки, на которую не рассчитаны приборы.

Конечно бывает очень обидно, когда необходимо выполнить срочную работу, а модуль питания у компьютера неисправен или во время просмотра любимой телепередачи это устройство выходит из строя.

Не стоит сразу впадать в панику и обращаться в ремонтную мастерскую или спешить в супермаркет электроники за приобретением нового блока. Часто причины неработоспособности настолько тривиальны, что устранить их можно дома, с минимальными затратами финансовых средств и нервов.

Общее описание бытового импульсного питающего устройства

Конечно для того чтобы попытаться не только отремонтировать импульсный блок питания, но и определить его неисправность необходимо иметь базовые знания по электронике и обладать определенными электротехническими навыками.

Кроме того, следует помнить, что некоторые элементы блока находятся под сетевым напряжением, в силу чего даже при первичном осмотре устройства следует соблюдать осторожность.

Однако большинство блоков построены по типовым схемам и имеют сходные неисправности, поэтому самостоятельно отремонтировать импульсный блок питания может попытаться каждый.

В составе любого источника питания, будь то встроенный, как в телевизоре или установленный в виде отдельного устройства, как в настольном компьютере, имеются два функциональных блока – высоковольтный и низковольтный.

В высоковольтном боке, сетевое напряжение преобразуется диодным мостом в постоянное, и сглаживается на конденсаторе до уровня 300,0…310,0 вольт. Постоянное, высокое напряжение преобразуется в импульсное, частотой 10,0…100,0 килогерц, что позволяет отказаться от массивных низкочастотных понижающих трансформаторов, заменив их малогабаритными импульсными.

В низковольтном блоке импульсное напряжение понижается до необходимого уровня, выпрямляется, стабилизируется и сглаживается.

На выходе этого блока присутствует одно или несколько напряжений, необходимых для питания бытовой техники.

Кроме того, в низковольтном блоке смонтированы различные управляющие схемы, позволяющие повысить надежность устройства и обеспечить стабильность выходных параметров.

Визуально, на реальной плате, различить высоковольтную и низковольтную часть достаточно просто. К первой подходят сетевые провода, а от второй отходят питающие.

Импульсный стабилизатор в блоке питания на транзисторах

Диагностирование и простейший ремонт

Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.

Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.

Как показывает статистика, основные неисправности блока питания вызваны:

  • неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
  • пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
  • пробоем диодного моста (15,0%) в низковольтной части;
  • пробоем (выгоранием) обмоток дросселя выходного фильтра.

В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.

Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.

При перегорании предохранителя необходимо осмотреть электронную плату. Неисправность фильтрующего электролитического конденсатора обычна выражена его вздутием.

Для проверки диодов высоковольтной выпрямительной части придется выпаять каждый из них и проверить мультиметром (тестером).

Желательно проверку производить одновременно всех деталей.

При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.

После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.

Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.

Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и проверить тестером аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.

Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.

Ремонт стандартных устройств

Как уже говорилось, большинство блоков питания современных компьютеров и телевизоров построено по типовой схеме. Они отличаются типоразмерами используемых электронных деталей и выходной мощностью. Методика диагностирования и устранения неполадок для этих устройств идентичны.

Однако качественный ремонт требует соответствующего инструмента, в номенклатуру которого входят:

  • паяльник (желательно с регулируемой мощностью);
  • припой, флюс, спирт или очищенный бензин («Галоша);
  • приспособление для удаление расплавленного припоя (оловоотсос);
  • набор отверток;
  • бокорезы (кусачки);
  • бытовой мультиметр (тестер)
  • пинцет;
  • лампа накаливания на 100,0 ватт (используется в качестве балластной нагрузки).

Приступая к ремонту телевизионного питающего устройства или системы настольного компьютера желательно иметь их электрическую принципиальную схему. Сегодня сделать это нетрудно – подобные материалы для большинства моделей электронной техники можно найти в Интернете.

В принципе простые телевизоры можно ремонтировать без схемы, однако главной сложностью ремонта некоторых моделей является то, что питающее устройство вырабатывает весь спектр напряжений – включая высоковольтное, используемое для развертки кинескопа. Блоки питания бытовых компьютеров выполнены по однотипной схеме. Рассмотрим отдельно методику определения неисправности и ремонта телевизора и десктопа.

Ремонт телевизора

О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:

  • проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
  • разборка телевизионного приемника и освобождение электронной платы;
  • осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
  • проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.

Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов.

К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.

В практике ремонта имеют место случаи, когда модуль питания не работает (не запускается) а предохранитель не сгорел. Это может свидетельствовать о пробое (перегорании) транзистора генератора высокочастотных импульсов.

Наиболее частыми причинами неработоспособности телевизионных блоков является:

  • обрыв балластных сопротивлений;
  • неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
  • неисправность конденсаторов фильтров вторичного напряжения;
  • пробой или перегорание выпрямительных диодов.

Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.

Здесь возможны несколько вариантов поведения отремонтированного устройства:

  1. Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
  2. Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:
    • пробит один из диодов выпрямительного моста;
    • велика утечка конденсатор (конденсатор «состарился»).

    Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.

  3. Если свечение лампочки велико, необходимо тут же отключить модуль питания от сети и заново провести проверку всех электронных деталей.

Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.

Ремонт питающего устройства настольного компьютера

Сегодня наибольшее распространение для питания настольных (десктопных) конструкторов получили устройства «АТХ» различной мощности. Поводом для их ремонта должно послужить:

  • материнская плата не запускается (компьютер полностью неработоспособен);
  • вентилятор охлаждения самого устройства не вращается;
  • блок многократно «пытается» самозапуститься.

Перед началом ремонта устройств «АТХ» необходимо собрать нагрузочную схему (рисунок). Ремонт осуществляют в следующей последовательности:

  • устройство вынимается из компьютера и с него снимается кожух;
  • пылесосом и кисточкой удаляется пыль с электронных плат и поверхностей деталей;
  • производится внешний осмотр электронных элементов и печатных плат;
  • подключается нагрузочное устройство.

При отсутствии внешних признаков причины неисправности проверяют предохранитель. В случае его перегорания на его место подключается лампа накаливания мощностью 100,0 ватт (аналогично ремонту телевизионного блока).

Если при включении лампа ярко вспыхивает и продолжает гореть, значит из строя вышел диодный мост в высоковольтной части или фильтрующий конденсатор. Возможно перегорание высоковольтного трансформатора.

Если предохранитель цел, то причиной неработоспособности может быть:

  • выход из строя транзисторов генератора импульсов;
  • неисправность ШИМ-контроллера.

В этих случаях проще приобрести новое устройство, которое в зависимости от мощности, стоит от 600…800 рублей.

При многократном самозапуске устройства причиной неработоспособности обычно является вход из строя стабилизатора опорного напряжения. При этом система компьютера не может пройти режим самотестирования отключает и включает модуль питания.

Читайте также:  Газовое оборудование – ремонт и обслуживание своими руками

Источник: http://househill.ru/kommunikacii/electrika/stabilizatory/remont-bloka-pitaniya.html

Ремонт компьютерных блоков питания

Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

  1. Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
  2. Отсос для припоя и (или) оплетка. Служат для удаления припоя.
  3. Отвертка
  4. Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
  5. Мультиметр
  6. Пинцет
  7. Лампочка на 100Вт
  8. Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод.

Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке.

Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки.

Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.
Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

  1. БП не запускается, отсутствует напряжение дежурного питания
  2. БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
  3. БП уходит в защиту,
  4. БП работает, но воняет.
  5. Завышены или занижены выходные напряжения

Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор

Задачей варистора является защита блока питания от импульсных помех.

При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла.

При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно.

Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель.

Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению.

Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем.

Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться.

А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло.

Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

Диоды и стабилитроны

Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

ШИМ

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.

Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W).

Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый.

Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

Источник: http://info.itcomplex.kiev.ua/remont-kompyuternyx-blokov-pitaniya.html

ATX блоки питания компьютеров: схемы и устройство

Tags: Ремонт блоков питания компьютеров

Производя ремонт компьютеров очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты.

Читайте также:  Технология крепления предметов на стене

Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера. Не зависимо от производителя и цены, устройство и принцип работы блока питания ATX неизменны. Схематически устройство блока питания компьютера можно разделить на:

  • Входную цепь (1)
  • Сетевой выпрямитель (2)
  • Автогенераторный источник питания (3)
  • Силовой каскад (4)
  • Вторичные выпрямители (5)

Внутреннее устройство блока питания ATX

Входная цепь состоит из сетевого фильтра гасящего помехи в сети от работы БП. Сетевой выпрямитель блока питания компьютера включает в себя диодную сборку (мост) и выпрямительные конденсаторы.

Автогенераторный источник питания работает когда компьютер выключен (не из сети, разумеется, а кнопкой Power) он подает дежурное напряжение питания +5VStb на контроллеры материнской платы. На силовой каскад  от выпрямителя подается напряжение +310В.

Транзисторы силового каскада блока питания ATX работают по двутактной схеме совместно с силовым трансформатором и управляются микросхемой ШИМ. Со вторичных обмоток силового трансформатора напряжение подается на вторичные низковольтные выпрямители.

Микросхема ШИМ запускается по сигналу от материнской платы «Power On» запуская, соответственно, транзисторно-трансформаторный преобразователь и подавая  напряжения на его вторичные обмотки. Во вторичных обмотках блока питания компьютера, кроме диодных сборок (на радиаторах) задействованы дроссели.

Структурная схема блока питания компьютера

Схема блока питания компьютера (кликните для увеличения).

Блок питания компьютера является импульсным устройством. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Сетевое напряжение 220в поступает через сетевой фильтр на выпрямитель состоящий из диодов и двух последовательно соединенных электролитических конденсаторов.

Так же запитывается автогенераторный источник питания формирующий дежурное напряжение +5v stb. С выпрямителя, напряжение величиной 310в поступает на силовой каскад реализованный на мощных транзисторных ключах и трансформаторе.

Силовой каскад управляется импульсами поступающими от микросхемы-генератора ШИМ (Широтно Импульсная Модуляция) через согласующий трансформатор на базы ключей. Генерируемое импульсное напряжение снимается со вторичных обмоток силового трансформатора, выпрямляется диодами и конденсаторами.

Величина выходного напряжения контролируется специальной схемой защиты, которая формирует сигнал Power-Ok (Power-Good). В случае отклонения выходных напряжений от номиналов сигнал Power-Ok не подается на контроллер материнской платы, тем самым блокируя запуск компьютера.

Принципиальные схемы блоков питания ATX

PowerMaster_230W PowerMaster_250W
Maxpower_PX-300W jnc
dtk_ptp-2038 colors_it_330

Схемы блоков питания Codegen и Gembird

codegen_atx_300w Codegen-330w
Gembird-350W

Распиновка разъемов ATX блока питания компьютера

                    Распиновка разъемов блока питания ATX

Ремонт блоков питания компьютеров

Ремонт блоков питания компьютеров следует начинать с проверки подачи сетевого напряжения ~220в на выпрямитель.

Далее, необходимо проконтролировать наличие +310в на выходе выпрямителя (не забывайте, что конденсаторы выпрямителя блока питания компьютера включены последовательно и напряжение на их выводах будет составлять приблизительно по 150-160в).

Удостоверьтесь в наличии напряжений +5v stb и Power-Ok (розовый и зеленый провода). Если они отсутствуют следует проверить автогенераторный источник питания дежурного режима и микросхему ШИМ (если нет напряжения Power-Ok).

Если генерация дежурного напряжения +5v stb и Power-Ok в норме, сосредоточьте свое внимание на силовых ключах и вторичном выпрямителе блока питания. Не забывайте, что для проверки полупроводников и конденсаторов их лучше выпаять из схемы.

Источник: http://computerrepair.com.ua/blog/shema-atx-bloka/

Блок питания ATX, устройство и принцип работы. Часть 1

Так как блок питания есть неотъемлемой частью ПК, то знать подробнее про него будет интересно каждому человеку связанным с электроникой и не только. От качества БП напрямую зависит работа ПК в целом.

И так, полагаю, что надо начать с самого простого, для каких целей предназначен блок питания: — формирование напряжения питания компонентов ПК: +3,3 +5 +12 Вольт (дополнительно -12В и -5В); — гальваническая развязка между 220 и ПК (чтобы не бился током, и не было утечек тока при сопряжении компонент).

Простой пример гальванической развязки это трансформатор. Но для питания ПК нужна большая мощность, а соответственно и трансформатор больших размеров (комп был бы очень большим :), и переносили его бы вдвоем из за немалого веса, но нас это миновало :)).

Для построения компактных блоков используется повышенная частота тока питания трансформатора, с ростом частоты для того самого магнитного потока в трансформаторе нужно меньшее сечение магнитопровода и меньше витков. Создавать легкие и компактные БП позволяет завышенная в 1000 и больше раз частота питающего напряжения трансформатора.

Основной принцип работы БП заключается в следующем, преобразование переменного сетевого напряжения (50 Гц) в пер. напряжение высокой частоты прямоугольной формы (был бы осциллограф показал бы на примере), которое с помощью трансформатора понижается, дальше выпрямляется и фильтруется.

Блок-хема импульсного БП.

1. Блок Преобразовывает переменные 220В в постоянные. Состав такого блока: диодный мост для выпрямления переменного напряжения + фильтр для сглаживания пульсаций выпрямленного напряжения. А также должен быть (в дешевых БП на них экономят не впаивая, но я сразу рекомендую при переделке или ремонте их ставить) фильтр напряжения сети от пульсаций импульсного генератора, а также термисторы сглаживают скачок тока при включении.На картинке фильтр, на схеме обозначен пунктиром, его мы встретим почти в любой схеме БП (но не всегда на плате :)). 2. Блок Этот блок генерирует импульсы определенной частоты, которыми питается первичная обмотка трансформатора. Частота генерирующих импульсов у различных фирм производителей БП находится, где то в 30-200кГц пределах. 3. Блок На трансформатор положены такие функции: — гальваническая развязка; — понижение напряжения на вторичных обмотках до необходимого уровня. 4. Блок Этот блок преобразует напряжение, полученное от блока 3, в постоянное. Он состоит из выпрямляющих напряжение диодов и фильтра пульсаций. Состав фильтра: дроссель и группа конденсаторов. Часто для экономии конденсаторы ставят малой емкости, а дроссели малой индуктивности.

Импульсный генератор подробнее.

Схема ВЧ преобразователя состоит с мощных транзисторов, которые работают в режиме ключа и импульсного трансформатора. БП может собой представлять однотактный и двухтактный преобразователь: — однотактный: открывается и закрывается один транзистор; — двухтактный: поочередно открываются и закрываются два транзистора. Смотрим рисунок.

Элементы схемы: R1 — сопротивление, задающее смещение на ключах. Необходимое для более стабильного запуска процесса колебаний в преобразователе. R2 – сопротивление, ограничивающее ток базы на транзисторах, необходимо для защиты транзисторов от выхода из строя. ТР1 — Трансформатор имеющий три группы обмоток. Первая формирует выходное напряжение.

Вторая служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов. При включении первой схемы транзистор приоткрыт совсем немного, потому, что к базе приложено положительное напряжение через резистор R1. На приоткрытом транзисторе протекает ток, который протекает через II обмотку. Ток создает магнитное поле.

Магнитное поле создает напряжение в остальных обмотках. На III обмотке создается положительное напряжение, которое открывает транзистор еще больше. Процесс до тех пор происходит, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору, неизменным остается выходной ток.

Только при изменении магнитного поля генерируется напряжение на обмотках, при отсутствии изменений на транзисторе так же исчезнет и ЭДС в обмотках II и III.

Когда напряжение на обмотке III пропадет, тогда и уменьшится открытие транзистора, а следовательно уменьшиться выходной ток транзистора и магнитное поле, что приведет к появлению напряжения противоположной полярности. Отрицательное напряжение на III обмотке еще больше закроет транзистор. Процесс длится пока магнитное поле не исчезнет полностью.

Когда поле исчезнет, исчезнет отрицательное напряжение и процесс пойдет по кругу снова. Двухтактный преобразователь работает так же, но так как в нем два транзистора, работающих поочередно, то такое применение повышает КПД преобразователя и улучшает его характеристики.

В основном применяют двухтактные, но если надо малая мощность и габариты, а также простота, то однотактные. Рассмотренные выше преобразователи есть законченными устройствами, но их применение усложняется разбросом различных параметров таких как: загруженности выхода, напряжения питания, и температуры преобразователя.

Управление ключами ШИМ контролером (494).

Преобразователь состоит из трансформатора Т1 и транзистора VT1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ) диодный мост, фильтруется конденсатором Сф и через обмотку W1 подается на коллектор транзистора VT1. При подаче на базу транзистора импульса прямоугольной формы, он открывается и через него течет ток Iк который нарастает.

Этот же ток протекающий и через первичную обмотку трансформатора Т1, приводит к тому, что увеличивается магнитный поток в сердечнике трансформатора, и наводится ЭДС самоиндукции во вторичной обмотке W2. В итоге на диоде VD появиться положительное напряжение.

Увеличивая длительность импульса на базе транзистора VT1, будет увеличиваться напряжение во вторичной цепи, а если уменьшать длительность, то напряжение будет уменьшаться. Изменяя длительность импульса на базе транзистора, мы меняем выходное напряжения на W1 обмотке Т1, и осуществляем стабилизацию выходных напряжений блока питания.

Нужна схема формирования импульсов запуска и управления их длительностью (широтой). Такой схемой используется ШИМ (широтно – импульсная модуляция) контроллер. ШИМ контроллер состоит из: — задающего импульсного генератора (определяющего частоту работы преобразователя); — схемы контроля; — логической схемы, которая и управляет длительностью импульса; — схемы защиты.

Это тема другой статьи. Чтобы стабилизировать выходные напряжения БП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этого используется цепь обратной связи (или цепь слежения), выполненная на оптопаре U1 и резисторе R2.

Увеличение напряжения во вторичной цепи трансформатора Т1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Это приводит на резисторе R2 включенном последовательно фототранзистору к увеличению падения напряжения, и уменьшению напряжения на выводе 1 ШИМки.

Уменьшение напряжения заставляет логическую схему, составляющую ШИМ, увеличивать длительность импульса, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. Процесс обратный, когда напряжение уменьшается.

Есть две реализации цепей обратной связи: — «непосредственная» на схеме выше, обратная связь снимается непосредственно с вторичного выпрямителя; — «косвенная» снимается непосредственно с дополнительной обмотки W3 (смотрите рисунок ниже); Изменение напряжения на вторичной обмотке приведет к изменению его на обмотке W3, которое через R2 передается на 1 вывод ШИМки.

Читайте также:  Светильник люминесцентный – как заменить лампы светодиодными

Ниже приведена реальная схема БП.

1. Блок Выпрямляет и фильтрует переменное напряжение, а также здесь находится фильтр от помех которые создает сам БП. 2. Блок Этот блок формирует +5VSB (дежурное напряжение), а также питает контролер ШИМ. 3. Блок На третий блок (ШИМ — контролер 494) положены такие функции: — управление транзисторными ключами; — стабилизация выходных напряжений; — защита от короткого замыкания. 4. Блок В состав этого блока входят два трансформатора, и две группы транзисторных ключей. Первый трансформатор формирует напряжение управления для выходных транзисторов. 1 группа транзисторов усиливает генерируемый сигнал TL494 и передает его первому трансформатору. 2 группа транзисторов нагружена на основной трансформатор, на котором формируются основные напряжения питания. 5. Блок В состав этого блока входят диоды Шоттки для выпрямления выходного напряжения трансформатора, а также фильтр низких частот. В состав ФНЧ входят электролитические конденсаторы больших емкостей (зависит от производителя БП) и дросселей, а также резисторов для разрядки этих конденсаторов при выключенном БП.

Немного о дежурке.

Различиями между блоками стандарта АТХ от БП стандарта АТ в том, что БП АТХ стандарта имеют источник дежурного напряжения питания. На 9 контакте (20 контактного, фиолетовый провод) разъема вырабатывается напряжение +5VSB которое идет на мат плату для питания схемы управления БП. Эта схема осуществляет формирования сигнала «PS-ON» (14 контакт разъема, зеленый провод).

В данной схеме преобразователь работает на частоте, определяемой в основном параметрами трансформатора Т3 и номиналами элементов в базовой цепи ключевого транзистора Q5 — емкостью конденсатора С28 и сопротивлением резистора начального смещения R48 [1].

Положительная обратная связь на базу транзистора Q5 поступает с вспомогательной обмотки трансформатора Т2 через элементы С28 и R51. Отрицательное напряжение с этой же обмотки после выпрямителя на элементах D29 и С27, в случае если оно превышает напряжение стабилизации стабилитрона ZD1 (в данном случае 16 В) также подается на базу Q5, запрещая работу преобразователя.

Таким способом выполняется контроль за уровнем выходного напряжения. Напряжение питания с сетевого выпрямителя на преобразователь поступает через токоограничительный резистор R45, который при его выходе из строя можно заменить предохранителем на ток 500 мА, либо исключить совсем. В схеме на рис.1 резистор R56 номиналом 0.

5 Ом, включенный в эмиттер транзистора Q5 является датчиком тока, при превышении тока транзистора Q5 выше допустимого напряжение с него через резистор R54 поступает на базу транзистора Q9 типа 2SC945 открывая его, и тем самым запрещая работу Q5. Подобным образом осуществляется дополнительная защита Q5 и первичной обмотки Т3.

Цепочка R47C29 служит для защиты транзистора Q5 от выбросов напряжения. В качестве ключевого транзистора Q5 в указанной модели БП применяются транзисторы KSC5027.

В предыдущей моей статье БП был на аналогичных элементах (дежурка).

А теперь рассмотрим БП вживую.

1. Элементы фильтра сети от помех генерируемых БП. 2. Диодный мост, выпрямляющий переменные 220В. 3. Емкости фильтра сетевого напряжения. 4. Радиатор для выходных транзисторов преобразователя, а также транзистора преобразователя дежурки. 5. Основной трансформатор: развязка с сетью и формирование всех напряжений. 6. Трансформатор для формирования управляющего напряжения выходных транзисторов. 7. Трансформатор преобразователя, формирующий дежурное напряжение. 8. Радиатор для диодов Шоттки. 9. Микросхема ШИМ – контролера. 10. Фильтры выходных напряжений (электролитические конденсаторы). 11. Дроссели фильтра выходных напряжений.

На этом пока остановлюсь. Всем спасибо за столь долгое внимание. Надеюсь хоть кому то принес пользу 🙂 Жду комментариев и предложений по дополнению.

Продолжение будет…

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.

Источник: http://electronics-lab.ru/blog/remont/119.html

Технология ремонта блока питания компьютера своими руками – Можно ли самому сделать

Одним из важных составных элементов современного персонального компьютера является блок питания (БП). При отсутствии питания компьютер не будет работать.

С другой стороны, если блок питания будет вырабатывать напряжение, выходящее за пределы допустимого, то это может вызвать выход из строя важных и дорогих комплектующих.

Содержание

Схема компьютерного блока питания ATX

В таком блоке с помощью инвертора происходит преобразование выпрямленного сетевого напряжения в переменное высокой частоты, из которого формируются необходимые для работы компьютера низкие потоки напряжения.

Схема АТХ блока питания состоит из 2 узлов – выпрямителя сетевого напряжения и преобразователя напряжения для компьютера.

Сетевой выпрямитель представляет собой мостовую схему с емкостным фильтром. На выходе устройства формируется постоянное напряжение величиной от 260 до 340 В.

Основными элементами в составе преобразователя напряжения являются:

  • инвертор, преобразующий постоянное напряжение в переменное;
  • высокочастотный трансформатор, работающий на частоте 60 кГц;
  • низковольтные выпрямители с фильтрами;
  • устройство управления.

Кроме того, в состав преобразователя входят источник питания дежурного напряжения, усилители сигнала управления ключевыми транзисторами, схемы защиты и стабилизации, а также другие элементы.

Инвертор включает два силовых транзистора, работающих в ключевом режиме и управляемых с помощью сигналов с частотой 60 кГц, поступающих со схемы управления, реализованной на микросхеме TL494. В качестве нагрузки инвертора используется импульсный трансформатор, с которого снимаются, выпрямляются и фильтруются напряжения +3,3 В, +5 В, +12 В, -5 В, -12 В.

Основные причины неисправностей

Причинами неисправностей в блоке питания могут быть:

  • броски и колебания напряжения питающей сети;
  • некачественное изготовление изделия;
  • перегрев, связанный с плохой работой вентилятора.

Неисправности обычно приводят к тому, что системный блок компьютера перестает запускаться или после непродолжительной работы выключается. В других случаях, несмотря на работу других блоков, не запускается материнская плата.

Прежде, чем начинать ремонт, надо окончательно убедиться в том, что неисправен именно блок питания. При этом сначала надо проверить работоспособность сетевого кабеля и сетевого выключателя. Убедившись в их исправности можно отсоединять кабели и извлекать блок питания из корпуса системного блока.

Перед тем, как повторно автономно включить БП, к нему необходимо подключить нагрузку. Для этого понадобятся резисторы, которые подключаются к соответствующим выводам.

При этом величину сопротивлений резисторов нагрузки надо выбрать так, чтобы по цепям протекали токи, величины которых соответствовали номинальным показателям.

Мощность рассеивания резисторов должна соответствовать номинальным напряжениям и токам.

Вначале необходимо проверить влияние материнской платы. Для этого необходимо замкнуть два контакта на разъеме блока питания. На 20-контактном разъеме это будут контакт 14 (провод, по которому подходит сигнал Power On) и контакт 15 (провод, соответствующий выводу GND – Земля). Для 24-контактного разъема — это будут контакты 16 и 17 соответственно.

Исправность БП можно оценить по вращению его вентилятора. Если вентилятор вращается – блок питания исправен.

Далее надо проверить соответствие напряжений на разъеме блока их номинальным величинам. При этом надо учитывать, что в соответствии с документацией на блок питания АТХ допускается отклонение значений напряжения для цепи питания -12В в пределах ± 10%, а для остальных цепей питания ± 5%. В случае невыполнения этих условий надо переходить к ремонту блока питания.

Ремонт компьютерного блока питания ATX

Сняв крышку с блока питания, необходимо сразу с помощью пылесоса вычистить из него всю пыль. Именно из-за пыли часто выходят из строя радиодетали, поскольку пыль, покрывая деталь толстым слоем, вызывает перегрев таких деталей.

Следующим этапом определения неисправностей является тщательный осмотр всех элементов. Особое внимание необходимо обратить на электролитические конденсаторы. Причиной их пробоя может быть тяжелый температурный режим. Неисправные конденсаторы обычно вздуваются, и из них вытекает электролит.

Такие детали надо заменить новыми с такими же номиналами и рабочими напряжениями. Иногда внешность конденсатора не указывает на его неисправность. Если же по косвенным признакам есть подозрение на плохую работу, то можно проверить конденсатор мультиметром. Но для этого его нужно выпаять из схемы.

Ухудшение теплового режима внутри блока может быть связано с плохой работой кулера. Для улучшения работы его надо очистить от пыли и смазать подшипники машинным маслом.

Неисправность блока питания может быть также связана с неисправностью низковольтных диодов. Для проверки надо измерить сопротивления прямого и обратного переходов элементов с помощью мультиметра. Для замены неисправных диодов надо использовать такие же диоды Шоттки.

Следующая неисправность, которую можно определить визуально, является образование кольцевых трещин, которые нарушают контакты. Чтобы обнаружить такие дефекты, надо очень тщательно просмотреть печатную плату. Для устранения таких дефектов необходимо использовать тщательную пайку мест образования трещин (для этого необходимо знать, как правильно паять паяльником).

Таким же образом осматриваются резисторы, предохранитель, катушки индуктивности, трансформаторы.

В том случае, если перегорел предохранитель, его можно заменить на другой или починить. В блоке питания используется специальный элемент, имеющий выводы для пайки. Для ремонта неисправного предохранителя его выпаивают из схемы. Затем прогревают металлические чашки и снимают их со стеклянной трубки. Затем выбирают проволочку нужного диаметра.

Необходимый для данного тока диаметр проволоки можно найти по таблицам. Для применяемого в схеме блока питания АТХ предохранителя на 5А диаметр проволоки из меди составит 0,175 мм. Затем проволока вставляется в отверстия чашек предохранителя и фиксируется пайкой. Отремонтированный предохранитель можно впаять в схему.

Выше рассмотрены наиболее простые неисправности компьютерного блока питания. Для обнаружения и ремонта более сложных поломок требуются хорошая техническая подготовка и более сложные измерительные приборы, например, осциллограф.

Кроме того, элементы, которые необходимо заменять часто являются дефицитом и стоят довольно дорого. Поэтому при сложной неисправности всегда надо сравнивать затраты на ремонт и затраты на приобретение нового блока питания.

Часто случается так, что выгодней приобрести новый.

Выводы:

  • Одним из важнейших элементов ПК является блок питания, при выходе из строя которого компьютер перестает работать.
  • Блок питания компьютера представляет собой довольно сложное устройство, но в некоторых случаях его можно отремонтировать своими руками.
  • Видео с детальными рекомендациями по ремонту

    Источник

    Источник: http://groteskstroy.ru/elektrika/tehnologiia-remonta-bloka-pitaniia-komputera-svoimi-rykami.html

    Понравилась статья? Поделиться с друзьями:
    Своими Руками
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock
    detector