Закон ома и джоуля-ленца – формулы, калькуляторы для расчета

Закон Джоуля-Ленца

Содержание:

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны.

Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона.

В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло. Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I2Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени.

Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах.

Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I2Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I2Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U2/R)t.

Основная формула Q = I2Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая.

При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней.

Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах – одинаковым. В этом случае для расчетов больше подойдет формула Q = (U2/R)t.

Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости.

Таким образом, закон Джоуля – Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Источник: https://electric-220.ru/news/zakon_dzhoulja_lenca/2016-10-22-1093

09-ж. Закон Джоуля-Ленца

      § 09-ж. Закон Джоуля-Ленца

В XIX веке независимо друг от друга, англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников электрическим током и опытным путём обнаружили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

Силами других учёных было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому закономерность получила название закон Джоуля-Ленца:

Закон Джоуля-Ленца: количество теплоты, выделяемое током силой I в любом проводнике сопротивлением R за время наблюдения t.

Q – выделившееся количество теплоты, ДжI – сила электрического тока в проводнике, АR – сопротивление проводника, Омt – время прохождения тока, с

Справа показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля–Ленца. Разделив напряжение на силу тока, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I²Rt и Q=cmΔt° вычисляют количества теплоты, которые должны быть равны друг другу (с учётом погрешностей).

Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля–Ленца можно получить не только экспериментально, но и вывести теоретическим путём, используя знакомые нам формулы.

Согласно закону Ома
U = I · R | I = U / R
Согласно формуле работы тока
A = I·U·t = I·(I·R)·t | A = I·U·t = (U/R)·U·t
В итоге получаем:
A = (I&sup2·R)·t | A = (U²/R)·t

Мы получили сразу две новые формулы; выясним их физический смысл.

Левая формула A=I&sup2Rt похожа на формулу закона Джоуля–Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даст нам право считать эти величины равными? Для этого мы вспомним первый закон термодинамики (см. § 6-з) и выразим из него работу.

ΔU  =  Q + A       следовательно       A  =  ΔU – Q

Здесь ΔU – это изменение внутренней энергии нагреваемого током проводника; Q – количество теплоты, отданное проводником (на это указывает знак «–» впереди); A – работа, совершённая над проводником. Выясним, что это за работа.

Сам проводник неподвижен, но внутри него движутся электроны, наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, силы электрического поля должны постоянно совершать работу. Поэтому A – работа электрического поля по перемещению электронов проводника.

Обсудим теперь величину ΔU применительно к проводнику, в котором начинает идти ток. Проводник будет нагреваться, и его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды.

Согласно закономерности Ньютона (см. § 6-л), будет расти мощность теплоотдачи. Вскоре это приведёт к тому, что температура проводника перестанет увеличиваться.

И с этого момента внутренняя энергия проводника перестанет изменяться, то есть величина ΔU станет равной нулю.

Первый закон термодинамики для этого состояния запишется: A = –Q. Словами: если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в других видах:

Q  =  I·U·t Q  =  I&sup2·R·t Q  =  U²/R·t

Эти формулы мы пока будем считать равноправными. Позднее мы узнаем, что средняя формула справедлива всегда (поэтому и носит название закона), а две крайние – только при определённых условиях (которые мы сформулируем в старших классах).

Источник: http://calcsbox.com/post/09-z-zakon-dzoula-lenca.html

Закон Ома простым языком

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов.

Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни.

Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома  — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника.

Позже выяснилось, что третья составляющая – это не что иное, как сопротивление.

Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

I=U/R

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением.

Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия.

Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр.

Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается.

Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

Rпровод=ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм2/м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

I=I1=I2

U=U1+U2

R=R1+R2

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

Uэл=I*Rэлемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

I=I1+I2

U=U1=U2

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Читайте также:  Мультиварка – ремонт своими руками, схема, устройство

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки Ra и реактивное сопротивление X (или Rr). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

U=I/Z

XL и XC – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Напоследок рекомендуем просмотреть полезное видео, в котором простыми словами объясняется Закон Ома и его применение:

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить амперы в киловатты или по сопротивлению определять ток.

Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%.

Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Источник: https://samelectrik.ru/zakon-oma-prostym-yazykom.html

Закон Ома

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Георг Симон Ом

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

где

I – сила тока в проводнике, единица измерения силы тока – ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления – ом [Ом].

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Источник: https://zakon-oma.ru/

Законы Кирхгофа, Ома, Джоуля – Ленца

Поиск Лекций

Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.

Первый закон Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих черезэту поверхность должно быть равно количеству входящих зарядов.

Можно считать токи направленные к узлу положительными, а от узла отрицательными. Тогда для узла рис. 1 уравнение Кирхгофа будет иметь вид I3+I4-I1-I2 = 0 или I3+I4=I1+I2 .

Обобщая сказанное на произвольное число ветвей сходящихся в узле, можно сформулировать первый закон Кирхгофа следующим образом:

  • алгебраическая сумма токов в любом узле электрической цепи равна нулю
(1)
  • в любом узле сумма токов направленных к узлу равна сумме токов направленных от узла
, где p+q=n. (2)

в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве.

Если такое перемещение совершается по замкнутому контуру, то суммарная работа при возвращении в исходную точку будет равна нулю.

В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

Сформулируем оба варианта второго закона Кирхгофа, т.к. они принципиально равноценны:

  • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю

знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

  • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре
, где p+q=n (4)

знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Закон Омаэто закон, устанавливающий связь между падением напряжения U на любом неразветвленном (не содержащем узлов) участке электрической цепи и величиной тока I, протекающего по этому участку.

Если зависимость U(I) или I(U) какого-либо элемента электрической цепи линейна, то такой элемент называют линейным, а электрическую цепь, состоящую только из линейных элементов – линейной цепью.

Для линейного элемента справедливо

где r=1/g и g=1/r – некоторые постоянные коэффициенты имеющие размерность соответственно В/А=Ом (омы) и А/В=См (сименсы).Коэффициент r называется сопротивлением, а g – проводимостью. В резисторе ток и падение напряжения (напряжение) всегда имеют одинаковое направление (рис. 1).

Закон Джоуля-Ленца. Если по активному сопротивлению (проводнику) течет постоянный ток, то работа тока на этом участке идет на преобразование электрической энергии во внутреннюю. Увеличение внутренней энергии проводника приводит к повышению его температуры (проводник нагревается).

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма,— плотность электрического тока,— напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

3.Анализ электрического состояния цепей постоянного тока В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника.

Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи.
Рассмотрим схему на рис. 3.1.

Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы.

Рис. 3.1 Рис. 3.2 Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 – параллельно с ними, поэтому их эквивалентное сопротивление

После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи

Ток I1 в неразветвленной части схемы определяется по формуле:

Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:

I3 = I1 – I2 – формула получается из уравнения, составленного по первому закону Кирхгофа:

I1 – I2 – I3 = 0.

Читайте также:  Табурет для кухни – ремонт ножек и реставрация своими руками

Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:

I6 = I3 – I4 (в соответствии с первым законом Кирхгофа I3 – I4 – I6 =0).

4.Применение законов Кирхгофа и Ома для расчетов электрических цепей .Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях.

В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Пример параллельной цепи является — ламп «лесенкой»: напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по второму закону Кирхгофа.

Все те, кто знаком с основами электротехники, представляют себе значение закона Ома в теории и практике электрических цепей. Не вдаваясь в подробности, перечислим некоторые примеры использования закона Ома при изучении электрических цепей.

В первую очередь, как уже упоминалось, закон Ома в виде

служит для определения сопротивления проводника. При наличии амперметра и вольтметра эта операция даже для неопытного экспериментатора не представит трудностей. Одним из наиболее точных и чувствительных способов определения сопротивления является метод мостовых схем, расчет которых производится также с использованием закона Ома.

Применяя закон Ома для полной цепи, можно, изменяя внешнее сопротивление, вычислить ЭДС и внутреннее сопротивление источника тока, решив для этого систему двух соответствующих выражений:

ПоказанияI1 и I2 при этом снимают с амперметра, включенного в цепь. Сопротивление R1 и R2 внешних участков цепи можно найти, измеряя вольтметром падение напряжения на этих участках и применяя формулу закона Ома для участка цепи.

Этот же закон позволяет рассчитать электрическую цепь, источником тока в которой является батарея, составленная из нескольких элементов.

В настоящее время в электротехнике широко применяются правила Кирхгофа, с помощью которых рассчитывают разветвленные цепи.

Зная эти правила, можно, например, определить силу и направление тока в любой части разветвленной системы проводников, если заданы сопротивления и ЭДС всех его участков.

Второе правило Кирхгофа получено в результате применения закона Ома к различным участкам замкнутой цепи. Первое правило также следует из теоретических рассуждений Ома, изложенных им в работе «Теоретические исследования электрических цепей».

Изучение нелинейных цепей обязано своим прогрессом также закону Ома. Важнейшие характеристики электронных ламп и полупроводниковых приборов — крутизна характеристики, внутреннее сопротивление — определяется в соответствии с законом Ома.

Закон Ома применяется ко всей цепи. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа

5.Метод эквивалентного преобразования схем . Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

Последовательное соединение элементов
электрических цепей

На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.

Рис. 2.1

Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
Падения напряжений на сопротивлениях определяются по формуламВ соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.где- эквивалентное сопротивление.

Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

Параллельное соединение элементов
электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.

Рис. 2.2

Токи в параллельных ветвях определяются по формулам:

где- проводимости 1-й, 2-й и n-й ветвей.

В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

где

Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.

Рис. 2.3 Эквивалентная проводимость схемы

,

а эквивалентное сопротивлениеНапряжение на входе схемыТоки в параллельных ветвях

Аналогично

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

Преобразование треугольника сопротивлений
в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4.

Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя.

Если же заменить треугольник сопротивлений
R1-R2-R3, включенных между узлами 1-2-3, трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.

Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.

В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и R?1 включены последовательно, а ветви с сопротивлениями R?1 + R4 и R?3 + R5 соединены параллельно.

Преобразование звезды сопротивлений
в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений R?1-R?2-R?3, включенных между узлами 1-2-3.

2.5. Преобразование звезды сопротивлений

в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

При решении схемы методом непосредственного преобразования элементов используют серию эквивалентных преобразований схемы, направленных на упрощение схемы.

Понятие эквивалентного преобразования подразумевает такое изменение состава и/или топологии фрагментасхемы, при котором не изменяются электрические показатели (токи и напряжения) в остальных частях схемы, не затронутых преобразованием.

Такое обстоятельство означает, что величины, найденные для одной из эквивалентных схем (искомые или вспомогательные), действительны и для любой другой из эквивалентных схем.

Рекомендуемые страницы:

Источник: https://poisk-ru.ru/s43304t5.html

4. Расчет электрической мощности

Расчет электрической мощности

В прошлой статье мы с вами вывели формулу для определения мощности в электрической цепи: умножая напряжение в “вольтах” на силу тока в “амперах”, мы получаем мощность в “ваттах”. Давайте применим ее к следующей схеме:  

В этой схеме есть две известные нам величины: напряжение батареи составляет 18 вольт, а сопротивление лампы – 3 ома. Используя Закон Ома мы определим третью величину – силу тока:

Теперь, зная силу тока, мы можем умножить ее значение на напряжение и получить мощность:

Это означает что лампа рассеивает 108 ватт энергии в форме сета и тепла.

Давайте в этой же схеме увеличим напряжение батареи и посмотрим что произойдет. Интуиция подсказывает нам, что при увеличении напряжения и неизменном сопротивлении, сила тока в цепи также увеличится. А это значит, что увеличится и мощность:

В этой схеме напряжение батареи изменено и составляет 36 вольт вместо прежних 18. Сопротивление лампы не изменилось, и равно 3 омам. Сила тока теперь будет равна:

Давайте обсудим полученное значение. Если I=U/R, и мы удваиваем значение напряжения (U), оставляя неизменным сопротивление, то по логике вещей сила тока у нас тоже должна удвоиться. Действительно, сила тока в данной схеме имеет значение 12 ампер вместо прежних 6. А сейчас давайте вычислим мощность:

Обратите внимание, что мощность у нас также увеличилась по сравнению  с предыдущим примером, и увеличилась она значительнее, чем увеличилась сила тока. Почему так получилось? Ответ на этот вопрос прост.

Мощность является функцией напряжения умноженного на силу тока, а так как обе эти величины удвоились по сравнению с предыдущими значениями, то мощность увеличилась в 2х2 или в 4 раза.

Вы можете проверить эту цифру разделив 432 ватта на 108 ватт и увидев, что соотношение между ними равно 4.

Используя математику мы можем преобразовать формулу мощности применительно к тем случаям, когда нам не известно значение напряжения или силы тока:

  • Если нам известны только напряжение (U) и сопротивление (R):
  • Если нам известны только сила тока (I) и сопротивление (R):

Историческая справка: первым математическую связь между рассеиваемой мощностью и силой тока через сопротивление открыл не Георг Симон Ом, а Джеймс Прескотт Джоуль. Это открытие, опубликованное в 1841 году и содержащее формулу P=I2R, стало известно как Закон Джоуля. Однако очень часто эти уравнения причисляются к Закону Ома.

Краткий обзор:

  • Мощность измеряется в ваттах (сокращенно “Вт” или “W”).
  • Закон Джоуля: P=I2R; Р=IU; P=U2/R 

Источник: http://www.radiomexanik.spb.ru/2.-zakon-oma/4.-raschet-elektricheskoy-moschnosti.html

Закон Ома для участка цепи. Определение, формула расчета, калькулятор

В 1827 году  Георг Ом  опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.

Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.

Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с удельным сопротивлением) величина постоянная, можно оформить это следующей формулой:

где

  • I – тока в амперах (А)
  • V – напряжение в вольтах (В)
  • R – сопротивления в омах (Ом)

Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в  1 В.

Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:

где

  • σ – проводимость материала
  • J – плотность тока
  • Е – электрическое поле.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. Резистор, который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о параллельном и последовательно соединении более подробно описано как это сделать.

Закон Ома – формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

или

или

  Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах.Какой ток протекает через этот резистор?Треугольник напоминает нам, что:
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В.Какое будет падение напряжения на этом резисторе?Использование треугольника показывает нам, что:Таким образом, напряжение на выводе будет 120-20 = 100 В.

Закон Ома – мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

где

  • Р – мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

или

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной. 

Читайте также:  Щетки дворника автомобиля – ремонт своими руками

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Закон Ома – калькулятор

Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет:

Для закрепления понимания работы закона Ома, приведем несколько задач для самостоятельного решения.

Какая должна быть минимальным мощность этого резистора? Ответ:В соответствии с круговой диаграммой  Р = I2*R = 0,12*50 = 0,5 Вт. Таким образом, минимальная мощность должна быть не менее 0,5 Вт, но рекомендуется взять более мощный для дополнительной надежности и долговечности.
Какой будет ток в цепи? Ответ:Это простой пример закона Ома. Напряжение и сопротивление известны, так что мы можем вычислить ток по формуле:I = V / R = 6 / 1,2 = 5 А.
Электронагреватель (резистор) мощностью 1 кВт подключен в цепь с током 10A. Какое будет падение напряжения на нагревателе? Ответ:Напряжение может быть выражено через ток и мощность по формуле:V = P / I = 1000/10 = 100 В

Источник: http://www.joyta.ru/8001-zakon-oma-dlya-uchastka-cepi-opredelenie-formula-rascheta/

Глава 21. Электрический ток. Законы Ома и Джоуля-Ленца

Для решения задач ЕГЭ на постоянный ток надо знать определения тока, напряжения, сопротивления, закон Ома для участка цепи и замкнутой цепи, закон Джоуля-Ленца, а также уметь находить эквивалентные сопротивления простейших электрически цепей. Рассмотрим эти вопросы.

Электрическим током называют упорядоченное движение заряженных частиц. Силой тока в некотором сечении проводника называется отношение заряда, протекшего через это сечение за интервал времени, к этому интервалу времени

(21.1)

Чтобы в проводнике тек электрический ток, в проводнике должно быть электрическое поле, или, другими словами, потенциалы различных точек проводника должны быть разными. Но при движении электрических зарядов по проводнику потенциалы различных точек проводника будут выравниваться (см. гл.

19). Поэтому для протекания тока в течение длительного времени на каких-то участках цепи необходимо обеспечить движение зарядов в направлении противоположном полю.

Такое движение может быть обеспечено только силами неэлектрической природы, которые в этом контексте принято называть сторонними. В гальванических элементах («батарейках») сторонние силы возникают в результате электрохимических превращений на границах электродов и электролита.

Эти превращения обеспечивают перемещение заряда противоположно направлению поля, поддерживая движение зарядов по замкнутому пути.

Сила тока в однородном участке проводника пропорциональна напряженности электрического поля внутри проводника. А поскольку напряженность поля внутри проводника связана с разностью потенциалов его концов (или электрическим напряжением на проводнике), то

(21.2)

Коэффициент пропорциональности, который принято записывать в знаменатель формулы (21.2), является характеристикой проводника и называется его сопротивлением. В результате формула (21.2) принимает вид

(21.3)

Формула (21.3) называется законом Ома для однородного участка цепи, а сам участок цепи часто называют резистором (от английского слова resistance — сопротивление).

Если проводник является однородным и имеет цилиндрическую форму (провод), то его сопротивление пропорционально длине и обратно пропорционально площади сечения

(21.4)

где коэффициент пропорциональностизависит только от материала проводника и называется его удельным сопротивлением.

Если участок цепи представляет собой несколько последовательно соединенных однородных проводников с сопротивлениями(см. рисунок), то сила тока через каждый проводник будет одинаковой, электрическое напряжение на всем участке цепи равно сумме напряжений на каждом проводнике, а эквивалентное сопротивление всего участка равно сумме сопротивлений отдельных проводников

(21.4)

Если участок цепи представляет собой несколько однородных проводниковс сопротивлениями, соединенных параллельно (см. рисунок), то электрическое напряжение на каждом проводнике будет одинаковым, ток через участок будет равен сумме токов, текущих через каждый проводник, а величина, обратная эквивалентному сопротивлению всего участка, равно сумме обратных сопротивлений отдельных проводников

(21.5)

Рассмотрим теперь закон Ома для замкнутой электрической цепи.Пусть имеется замкнутая электрическая цепь, состоящая из источника сторонних сил с внутренним сопротивлениеми внешнего сопротивления. Пусть при прохождении зарядачерез источник сторонние силы совершают работу. Электродвижущей силой источника(часто используется аббревиатура ЭДС) называется отношение работы сторонних сил к заряду

(21.6)

В этом случае сила тока в цепи равна

(21.7)

Формула (21.7) называется законом Ома для замкнутой электрической цепи.

При прохождении электрического тока через участок цепи электрическое поле совершает работу (часто эту работу называют работой тока, хотя термин этот не очень точный). Очевидно, вся эта работа превращается в тепло. Поэтому если через участок цепи прошел заряд, где — сила тока в цепи, — время, то количество выделившейся теплоты равно

(21.8)

(для получения последнего и предпоследнего равенств использован закон Ома для участка цепи). Формулы (21.8) называются законом Джоуля-Ленца. Из формулы (21.8) следует, что количество выделившейся при протекании электрического тока теплоты линейно зависит от времени наблюдения. Поэтому отношение

(21.9)

которое называется мощностью тока, не зависит от времени наблюдения. Формулу (21.9) также называют законом Джоуля-Ленца.

Рассмотрим теперь задачи.

Структура металла кратко обсуждалась в гл. 16: положительно заряженные ионы расположены в узлах кристаллической решетки, образовавшиеся в результате диссоциации валентные электроны могут свободно перемещаться по проводнику (свободные электроны). Они и осуществляют проводимость металла (задача 21.1.1 — ответ 2).

Согласно определению (21.1) находим среднюю силу тока в канале молнии (задача 21.1.2)

(ответ 2).

Если за 1 мин через сечение проводника протекает заряд 60 Кл (задача 21.1.3), то сила тока в этом проводнике равнаА. Применяя далее к этому проводнику закон Ома для участка цепи, получаемВ (ответ 2).

По закону Ома для участка цепи имеем для силы токачерез участок цепи после изменения его сопротивления и электрического напряжения на нем (задача 21.1.4)

Таким образом, сила тока уменьшилась в 4 раза (ответ 3).

Согласно закону Ома для участка цепи сопротивление — это коэффициент пропорциональности между напряжением на этом участке и силой тока в нем. Поэтому в задаче 21.1.5 имеем, например, используя крайнюю точку графика

(ответ 2). Из-за линейной зависимости тока от напряжения вычисления можно было выполнить и по другим точкам графика, ответ был бы таким же.

Согласно формуле (21.4) имеем для первой проволоки в задаче 21.1.6

где— удельное сопротивление меди, — длина проводника,— его радиус. Для медной проволоки с вдвое большей длиной и втрое бóльшим радиусом сечения имеем

(ответ 3).

Как следует из формулы (21.4) при двукратном уменьшении длины проводника вдвое уменьшается его сопротивление. Поэтому из закона Ома для участка цепи (21.3) заключаем, что при двукратном уменьшении напряжения на проводнике и двукратном уменьшении его длины (задача 21.1.7) сила тока в проводнике не изменится (ответ 4).

В задаче 21.1.8 следует использовать закон Ома для замкнутой электрической цепи (21.7). Имеем

где— ЭДС источника,— сопротивлении е внешней цепи,— сопротивление источника (ответ 1).

В задаче 21.1.9 следует применить закон Ома для замкнутой электрической цепи (21.7) к какому-нибудь значению внешнего сопротивления, по графику найти силу тока в цепи, а затем и ЭДС источника. Проще всего применить закон Ома к случаю. Из графика находим силу тока. Поэтому

где— внутреннее сопротивление источника (ответ 3).

Из формулы (21.9) следует, что при фиксированном сопротивлении участка цепи увеличение электрического напряжения в 2 раза (задача 21.1.10) приведет к увеличению мощности тока в 4 раза (ответ 2).

В задаче 21.2.1 удобно использовать вторую из формул (21.9). ИмеемВт (ответ 3).

Часто школьники не могут ответить на такой вопрос: из формулы для мощности токаследует, что мощность линейно растет с ростом сопротивления, а из формулы— убывает с ростом сопротивления. А как же в действительности мощность зависит от сопротивления? Давайте разберемся в этом вопросе на примере задачи 21.2.2.

Конечно, оба предложенных «решения» неправильны: в них молчаливо предполагалось, что сила тока, текущего через это сопротивление, или напряжение на этом сопротивлении не зависят от его величины. А на самом деле эти величины от сопротивлениязависят, причем эти зависимости могут быть разными для разных источников тока.

Внутреннее сопротивление бытовых электрических сетей очень мало. В этом случае из законов Ома для замкнутой цепи и участка цепи (21.7), (21.3) следует, что напряжение на любом элементе, включенном в такую сеть, не зависит от сопротивления этого элемента и равно номинальному напряжению сети.

Поэтому из формулызаключаем, что мощность, которая выделяется на таком элементе обратно пропорциональна его сопротивлению (ответ 3). Отметим, что из проведенного рассуждения следует, что выделяемая мощность будет очень большой (опасная в быту ситуация!) для малого сопротивления внешнего участка цепи, т.е.

в случае короткого замыкания, которого, таким образом, необходимо избегать.

Если бы внутреннее сопротивление источника было бы много больше внешнего сопротивления, ток в цепи определялся бы, главным образом, внутренним сопротивлением источника, а от внешнего сопротивления зависел бы слабо. В этом случае мощность тока была бы прямо пропорциональна сопротивлению участка цепи.

Как обсуждалось в решении предыдущей задачи, сопротивление элемента, работающего в бытовой электросети равно, где— номинальная мощность данного элемента,— напряжение в сети. Поэтому отношение сопротивлений ламп мощностьюВт иВт, рассчитанных на работу в одной и той же бытовой электрической сети (задача 21.2.3) равно

(ответ 2).

Поскольку резисторы в задаче 21.2.4 соединены последовательно, то сила тока в них одинакова. Поэтому из закона Ома для участка цепи заключаем, что

(ответ 2).

При параллельном соединении ламп (задача 21.2.5) напряжение на них одинаково (см. введение к настоящей главе). Поэтому из закона Ома для участка цепи следует, что

(ответ 1).

Рассматриваемый в задаче 21.2.6 участок представляет собой два последовательных соединенных элемента, один из которых есть резистор 6 Ом, второй — два таких же резистора, соединенных параллельно. По правилам сложения сопротивлений находим эквивалентное сопротивление второго участка

а затем и эквивалентное сопротивление всей цепи

(ответ 3).

При разомкнутом ключе сопротивление участка цепи, данного в задаче 21.2.7, можно найти как в предыдущей задаче, где— сопротивление каждого резистора. Если ключ замкнут, то цепь сводится к одному резистору (т.к.

параллельно двум резисторам включается проводник с пренебрежимо малым сопротивлением). Поэтому в этом случае сопротивление цепи равно.

Таким образом, сопротивление второй цепи составляет две трети от сопротивления первой (ответ 1).

Как обсуждалось в решении задачи 21.2.2, сопротивление элемента номинальной мощности, работающего в бытовой электросети равна

гдеВ — напряжение сети. Из этой формулы следует, что чем больше номинальная мощность элемента, тем меньше должно быть его сопротивление. Если две лампы накаливания включены последовательно (задача 21.2.

8), то сила тока в них одинакова и отношение мощностей тока в этих лампах равно отношению их сопротивлений.

Отсюда следует, что отношение реально выделяемых в лампах мощностейиобратно отношению номинальных мощностей этих ламп:

(ответ 2).

Работа, совершаемая электрическим полем в проводнике при протекании по нему электрического тока, превращается в энергию тока, которая затем превращается в тепловую энергию. Поэтому работу поля можно найти из закона Джоуля-Ленца. Для работы поля за времяполучаем. Из этой формулы находим сопротивление проводника в задаче 21.2.9

(ответ 1).

Поскольку при последовательном соединении резисторов ток через каждый из них одинаков, из закона Джоуля-Ленца(22.8) заключаем, что из двух сопротивленийи(задача 21.2.10; см. рисунок) наибольшей будет мощность тока на сопротивлении, из двух сопротивленийи— на сопротивлении.

Сравним мощности тока на этих сопротивлениях.

Учитывая, что при параллельном соединении элементов электрическое напряжение на каждом элементе одинаковое, а при последовательном — складываются значения сопротивлений, получим из законов Ома для верхнего и нижнего участков цепи и закона Джоуля-Ленца

где— электрическое напряжение, приложенное ко всей цепи. Посколькуто в представленной схеме наибольшая мощность будет выделяться на сопротивлении(ответ 2).

Источник: http://online.mephi.ru/courses/sge/data/reference_book/21/p21.html

Ссылка на основную публикацию
Adblock
detector